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Abstract

CyclooctatetraeneÐvia its 1a,2a,5a,6a-diepoxy-3b,4b-diol (4)Ðis the basis for the construction of
speci®cally polyfunctionalized C8 building blocks. Whilst with monofunctional nucleophiles only mono-
substitution and with 1,1-dinucleophiles neatly intramolecular cyclization to aza(oxa,thia)bicyclo[4.2.1]-
nonenes occurred, the desired substitution pattern became, in principle, accessible with 1,2-disubstituted
hydrazines. The usefulness of the 7-hetero[4.2.1]bicycles for the preparation ofmeso-persubstituted azepanes
and oxepanes is exempli®ed. # 2000 Elsevier Science Ltd. All rights reserved.
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In the context of mechanistic as well as synthetic studies the polyfunctionalization of bulk
cycloole®nsÐsuch as polyepoxides A±C from benzene,1 cycloheptatriene,2 1,4,7-cyclononatriene3Ð
has been intensively investigated.4 In this letter we report on a project based on cyclooctatetraene
(COT), with the (still missing) all-cis-tetroxide 1 as an early target,5 directed at the synthesis of
enantiopure linear C8 building blocks of type D6 and meso-persubstituted oxepanes and azepanes
E.7 (Scheme 1).
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Scheme 1.
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For the C8 building blocks D featuring diaminopolyol-segments, o�ering the chance for bio-
catalytic routes to enantiopure products,6 the diepoxy-cyclooctene-diol 4a was chosen as starting
material. To this end, conditions for the selective mono-cis-bishydroxylation of COT-syn-l,5-
dioxide 3, though accessible only with moderate e�ciency (CF3CO3H, ca. 50%;8 the DMDO
oxidation of 3 had not led even to traces of 1, but instead to the all-trans tetroxide 25 described
since by Murray's group9),10 were worked out: Along an optimized protocol crystalline 4a,
resulting from the anti-speci®c attack upon the boat-like conformation with quasi-equatorial
epoxide rings, was obtained in 85±90% yield (2.5 mg [OsO4]/mmol 3:acetone:water 5.5:l:1.05
equiv. of NMO/room temperature/24 h/continuous extraction of 4a10,11) (Scheme 2). From the
signi®cantly slower reaction of 4a (3 equiv. of NMO/72 h) the crystalline, water-soluble diepoxy-
tetrol 5a was obtained in moderate, not optimized yield of ca. 50% after crystallization from
methanol. Under standard conditions the derivatization of 4a to 4b±4f, in part e�ected to in¯uence
conformational ¯exibility and relative substitution rates, was in all cases straightforward (90±98%).
At room temperature generally averaged boat conformations (Cs) with quasi all-equatorial sub-
stitution were established (J1,2(3,4)=5.8 Hz (4b), 4.0 Hz (4c, d, e), 3.9 Hz (4f); J6,7(8,9) <l Hz).

For the installation of N- and O-functionalities via allylic substitutions in diepoxides 4a±fÐas
practiced before with the diepoxy-cycloheptenes 612Ðmodel considerations and force-®eld cal-
culations signaled: (i) an energy barrier rapidly increasing with the conformational rigidity (from
4a to 4f); (ii) a very high barrier for the subsequent epoxide opening to give bisadducts; and (iii)
with bifunctional nucleophiles favorable prerequisites for intramolecular cyclization (C-8) in the
primary twisted boat conformations F hardly to be o�set by steric manipulations (Nu, R)
(Scheme 3). To recall, in the case of the cycloheptenes 6 the ®rst addition of monofunctional
nucleophiles to give the relatively ¯exible monoadducts G was much slower than the second one
(only bisadducts were isolable), and with 1,1(1,2)-dinucleophiles the intramolecular allylic a-sub-
stitution (C-7) had to compete with the b-substitution (C-1).

Scheme 2.

Scheme 3.
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In practice, the response of 4a±f to monofunctional (N3
^), 1,1-(primary amines, water, 1,1-disub-

stituted hydrazines), and 1,2-difunctional nucleophiles (1,2-disubstituted hydrazines) lived up to
expectation in that the rigidized 4e and 4f remained intact towards all nucleophiles tested. The
reactions with N3

^ as exempli®ed with 4c,d, performed at room temperature in order to restrict
subsequent aza-Cope rearrangement and hence very slow (NaN3, MgSO4, 3 resp. 10 days), pro-
vided nevertheless mixtures of the monoazides 7a,c and their Cope-isomers (SN2

0?) 8a,c (together
>95%; the ratios of 1.6:1 resp. 19:1 are practically the equilibrium compositions established at
60�C for the individual chromatographically separated triacetates) (Scheme 4). In line with the
reluctance of the low-energy conformations of the rather immobile 7a,c (7b (CDCl3): �1-H � 3:49,
�2-H � 3:24, �3-H � 3:57, �4-H � 5:38, �5-H � 4:10, �6-H � 5:67, �7-H � 5:97, �8-H � 3:60; J1,2=8.3,
J2,3=2.1, J3,4=6.7, J4,5=9.1, J5,6=5.4, J6,7=11.8, J7,8=1.1, J8,1=5.6; J1,7=�J6,8=�J5,8=�1.1
Hz) and of the more ¯exible 8a,c (8b (CDCl3): �1-H � 3:14, �2-H � 3:47, �3-H � 3:82, �4-H � 5:57,
�5-H � 5:88, �6-H � 5:74, �7-H � 4:25, �8-H � 3:16; J1,2=8.0, J2,3=1.1, J3,4=J4,5=7.5, J5,6=11.8,
J6,7=7.5, J7,8=7.6, J8,1=5.2, J5,7=1.6 Hz) to adjust to the necessary conformational changes,
neither underwent further addition to a bisazide (e.g. desired 9). Forcing, particularly SN1 type
protocols, led to complex product mixtures and decomposition. With several, sterically more or
less demanding primary amines (R2NH2), 4a,c reacted without a directive e�ect of the R1/R2

groups being noticed; in all cases the smoothly formed monoadducts F cyclized, too rapidly to be
observable, via regiospeci®c attack at C-8, to the 7-azabicyclo[4.2.1]nonenes 10a±i (derivatized as
diacetates). Analogously, hydrazinolysis of 4a (re¯uxing in 4 equivalents of deoxygenated 80%
aq. N2H4), hydrolysis of 4a,c (H2O/THF/BF3/Et2O/rt/24 h) as well as the reaction of 4a with
Na2S (LiClO4/CH3OH/H2O, rt/24 h) uniformly (NMR, TLC) led to the respective 7-aza(oxa,
thia)bicyclo[4.2.1]nonenes 10h, 11a and 12a, isolated after acetylation as crystalline 10i, 11b and

Scheme 4.
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12b (>90%). Cis-bishydroxylation as well as epoxidation of the 7-aza(oxa)bicyclo[4.2.1]octenes
occurred expectedly only from the exo-sides to give, quantitatively, e.g. 14a, 15a, and 16a,
respectively (J1,8(6,7)=0.5±2; J1,2(5,6)=4.5±6.5; J2,3(4,5)=5±6.5 Hz). On the other hand, the sub-
stitution pattern not accessible through the azide addition (9), in principle, was realized when 4d,
with 1,2-disubstituted hydrazines (1,2-dimethyl-, 1,2-dibenzyl-, re¯uxing methanol/water), yielded
highly selectively (up to 95%) the 7,8-diazabicyclo[4.2.2]decenes 13a,c (derivatized as 13b,d,
invertomers). This pathway seemingly depends on the nature of the R groups in 4(F); with
R=CH3 selectivity is not achieved.
For the oxidative transformation (ozonation) of the bicycles 10 and 11 into the meso-persub-

stituted azepanes and oxepanes of type E, in order to avoid complications potentially arising
from neighboring groups at C-2(5), exploratory runs were performed with the tetrakis(methyl-
ethers) 10i and 11c. After reductive workup and acetylation meso-azepane 17 (at 110�C (DMSO)
J2,3(6,7)=3.5, J3,4(5,6)=6.3 Hz) and meso-oxepane 18 (J3,4(5,6)=6.1 Hz) were isolated in 50±60%
yield; at least within these limits no epimerization at the intermediate stages had occurred
(Scheme 5).
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